污水处理过程中需要检测大量的水质参数。这些参数用于监测反应器的运行状态和出水水质,并指导反应器的运行。人工检测水质参数的方式不能及时地提供反应器的水质信息。在线仪器检测水质参数的方式虽然可以避免人工检测的弊端,但是在线检测化学需氧量等指标的仪器价格较为昂贵,维护成本也高。因此,在线测量仪器难以在小型污水处理厂、农村污水处理设施中普及。同时,大量的小型污水处理设施难以配备专业的技术人员进行日常监管。因此,这些污水处理设施的运行在客观上需要智能化控制或者集中化控制。这在客观上需要准确、便捷、成本低的水质参数检测手段,以摆脱对现有昂贵检测仪器的依赖。软测量可以通过机器学习等方式建立基础指标(例如溶解氧等)与目标指标(例如生化需氧量等)之间的数学关系,并最终从基础指标推断目标指标的数值。与常规目标指标的检测方法相比,这些基础指标检测耗时短、费用低,获得的相应的目标指标耗时较短、费用低廉。软测量的这些优点使其在部分工业领域得到了广泛的应用,这也为污水处理设施水质指标的日常监测与实现污水厂运行智能化提供了新的解决途径。近年来,国内的研究人员在污水处理领域对软测量技术进行了大量的研究。本文通过综述现有文献,概述了软测量技术测量污水处理相关水质指标的进展。相关论文的研究由自动化、计算机等专业人员完成。本文从水处理专业角度探讨有待进一步研究之处,期望可以起到抛砖引玉的效果。Part1软测量技术测量水质的技术原理软测量技术本身未采用任何硬件去测量目标水质指标的数值。其构建了一批其他水质参数的检测值与已经获得的目标水质指标检测值之间的某种相关关系,从数值上,通过其他水质指标数值来推断目标水质指标的数值。软测量技术一般通过机器学习的方式来实现,故上述相关关系的准确构建过程不受人工干预,最后构建成的关系也是未知的。然而,构建相关关系在实践中具备使用价值。软测量在实际运用过程中有多种可使用的机器学习方式。这些机器学习手段均使用了复杂的数学手段,在有限的篇幅中对任意一种数学手段的原理进行详细介绍是非常困难的。本文仅对使用广泛的BP(backpropagation,误差反向传播)神经网络、RBF(radicalbasisfunction,径向基函数)神经网络以及支持向量机方法的基本原理进行介绍。实际运用过程中,上述3种软测量手段存在多种变种。这些变种的技术细节可参考本文的参考文献。1.1BP神经网络原理BP神经网络由输入层、隐藏层和输出层构成。每层节点数量没有限制,但是隐藏层节点数一般大于等于输入层节点数。图1为有3个输入变量的BP神经网络。输入层接收来自辅助变量的数据。隐藏层中每一个节点的输入是通过线性组合得到的一个数值,该数值是输入层所有节点数值与对应权重乘积的和加上一个常数项;该节点的输出是该线性组合值作为变量经过该节点上的一个激励函数处理后的函数值。隐藏层每个节点的输出与相应权重相乘的和加上一个常数项是输出层节点的输入。该输入经过输出节点中的激励函数处理后,作为该输出节点的输出。若该输出与测量值不一致,那么结合反馈,采用最优化方法,调整上述过程中涉及的权重值以及激励函数中的参数,直到输出层输出数值与测量值之间的差值足够小。神经网络的训练过程就是利用已有目标参数的数值监督学习,并调整上述权重和激励函数中参数值的过程。当训练完成之后,该神经网络具备将输入参数转化成输出的能力。BP神经网络是应用广泛的神经网络,如图1所示。但是,其计算量大,易于陷入局部最小点,从而使预测不准确。1.2RBF神经网络原理RBF神经网络的结构与BP神经网络类似,也包括输入层、隐藏层和输出层。不同的是,输入层到隐藏层之间的权重恒等于1。BP神经网络中的激励函数一般采用Sigmoid函数,而RBF神经网络隐藏层中一般采用高斯函数等具备径向对称性的函数。隐藏层任意节点高斯函数的输入为输入层的参数向量与该高斯函数权值向量之间的距离。若输入的参数向量与该节点高斯函数的权值向量距离较远,那么该输入向量对该节点的输出影响很小。RBF神经网络的训练过程就是确定高斯函数的中心、方差和隐藏层到输出层权重的过程。根据函数中心优化方法的不同,RBF高斯函数有多种函数中心优化方法,如随机选取法、自组织选取中心法、有监督选取中心法和正交最小二乘法。与BP神经网络相比,RBF神经网络学习速度快,并可有效避免陷入局部最小值。RBF神经网络可能存在过学习的问题,即训练得到的模拟曲线在两个样本点之间不平滑。1.3支持向量机原理若样本点可被一个空间面在多维空间被有效地分开成两批,该空间面向这两批样本点分别平移所碰到的第一个样本点称为支持向量。基于支持向量的支持向量机方法不但可以用作样本点的分类,也可以用作回归分析。当用作回归分析时,支持向量机方法将输入向量通过非线性映射φ(x)变换到另一个高维空间,并在此空间内进行线性回归。对于一个训练集[式(1)],对该训练集进行训练,实际上是求函数[式(2)],使得函数值与yi之间的距离尽可能小。经过数学变化,上述函数等价变换成式(3)和式(4)。支持向量机方法原则上可以避免过学习的问题。Part2软测量技术测量水质的途径在软测量领域,目标指标称为主变量(primaryvariable)。主变量一般是化学需氧量、生化需氧量等检测需时长、流程复杂的水质指标,是软测量的预测目标。相应地,基础指标称为辅助变量(secondaryvariable)。辅助变量一般是酸碱度等容易检测的指标。软测量模型的开发及使用一般包括下述步骤。2.1筛选辅助变量不是所有易检测的水质参数都与主变量相关,有的辅助变量与主变量相关性较弱。因此,为了方便收集和处理数据,通常需要限定辅助变量的选择范围。辅助变量的选择可根据研究人员的专业知识通过提出初步的范围以及主成分分析等数学工具筛选必要的辅助变量。2.2数据处理现场采集到的辅助变量的测量数值不是恒定的。对于任意一个辅助变量,若部分检测值与其他数值的偏差较大,需将显著偏离其他数值的数据筛选出去。通常情况下,将与样本平均值差别大于样本标准差3倍的数据剔除。必要时,需将数据进行标准化处理,还需将获得的数据按照一定的方式分为2~3批,以满足后续构建模型的学习和检验。2.3模型的选用大量的机器学习手段可以用来构建辅助变量和主变量之间的相关关系。然而,不同的机器学习方式在复杂程度、计算速度、收敛于全局最优点的能力、过学习的性能方面存在较大的差异。原则上,在有大量训练数据的情况下,现有的机器学习方式均可以实现良好的预测效果。2.4模型训练、验证、使用采用样本对建立的模型进行训练后,应采用其他样本验证模型的正确性。只有在模型的正确性得以验证的前提下,该模型才具备可被运用的前提。该步骤应该考虑避免模型的过拟合和欠拟合。2.5模型的在线矫正模型在使用的过程中,受到进水水质变动等因素的影响,软测量的预测能力可能会退化。因此,需对软测量模型进行一定的矫正,使其预测能力在受到干扰的情况下也能预测准确。Part3国内污水处理软测量的研究进展图2为年至今所有发表在中文期刊上涉及不同软测量技术的论文与相关论文总数的比例。图2显示,基于神经网络的软测量技术是最常见的软测量技术手段,支持向量机方法相关的论文比例略低于基于神经网络的论文,采用其他方法的论文数量较少。表1显示,国内的相关研究主要
转载请注明:
http://www.aideyishus.com/lkcf/7545.html